

Welcome to django-popupcrud’s documentation!

Contents:

	Quickstart

	Reference
	Classes

	Template Tags

	How-tos
	Create CRUD views for a model

	Control access using permissions

	Create a model object from its FK select box in another form

	Use Select2 instead of native Select widget

	Providing your own templates

	Demo Project

	Settings

Quickstart

	Install django-popupcrud using pip:

pip install django-popucrud

Or install it directly from the source repository:

pip intall git+https://github.com/harikvpy/django-popupcrud.git

Yet another way would be to clone this repository and install from the cloned
root folder via pip install -e ..

	Install the dependencies - django-bootstrap3 and
django-pure-pagination. Add the dependencies and popupcrud to
INSTALLED_APPS in your project’s settings.py:

INSTALLED_APPS = [
 ...
 'bootstrap3',
 'pure_pagination',
 'popupcrud',
 ...
]

	Let PopupCrudViewSet know of your base template file name. This defaults
to base.html, but if your project uses a different base template
filename, inform PopupCrudViewSet about it in settings.py:

POPUPCRUD = {
 'base_template': 'mybase.html',
}

Include Bootstrap CSS & JS resources in this base template.
If you were to use django-bootstrap3 tags for these, your base
template should look something like this:

<head>
 {% bootstrap_css %}
 <script src="{% bootstrap_jquery_url %}" type="text/javascript" charset="utf-8"></script>
 {% bootstrap_javascript %}
 {% block extrahead %}{% endblock extrahead %}
</head>

Also, define a block named extrahead within the <head> element.
PopupCrudViewSet views use a few custom CSS styles to show column
sorting options and sort priority. These styles are defined in
static/popupcrud/css/popupcrud.css which is inserted into
the extrahead block. If you don’t declare this block,
you will have to explicitly load the stylesheet into your base template.

	In your app’s views.py, create a ViewSet for each model for which you
want to support CRUD operations.

Models.py:

from django.db import models

class Author(models.Model):
 name = models.CharField("Name", max_length=128)
 penname = models.CharField("Pen Name", max_length=128)
 age = models.SmallIntegerField("Age", null=True, blank=True)

 class Meta:
 ordering = ('name',)
 verbose_name = "Author"
 verbose_name_plural = "Authors"

 def __str__(self):
 return self.name

Views.py:

from popupcrud.views import PopupCrudViewSet

class AuthorViewSet(PopupCrudViewSet):
 model = Author
 fields = ('name', 'penname', 'age')
 list_display = ('name', 'penname', 'age')
 list_url = reverse_lazy("library:authors:list")
 new_url = reverse_lazy("library:authors:create")

 def get_edit_url(self, obj):
 return reverse_lazy("library:authors:update", kwargs={'pk': obj.pk})

 def get_delete_url(self, obj):
 return reverse_lazy("library:authos:delete", kwargs={'pk': obj.pk})

	Wire up the CRUD views generated by the viewset to the URLconf:

urlpatterns= [
 url(r'^authors/', views.AuthorCrudViewset.urls()),
]

This will register the following urls:

	authors/ - list view

	authors/create/ - create view

	authors/<pk>/ - detail view

	authors/<pk>/update/ - update view

	authors/<pk>/delete/ - delete view

The urls are registered under its own namespace, which defaults to the
model’s verbose_name_plural meta value.

	Thats it! Your modern HTML popup based CRUD for your table is up and running.

PopupCrudViewSet has many options to customize the fields displayed in list
view, form used for create/update operations, permission control and more.
Refer to the Reference and How-to sections of the documentation for more
details.

Reference

Classes

PopupCrudViewSet

	
class popupcrud.views.PopupCrudViewSet(*args, **kwargs)

	This is the base class from which you derive a class in your project
for each model that you need to build CRUD views for.

	
model = None

	The model to build CRUD views for. This is a required attribute.

	
new_url = None

	URL to the create view for creating a new object. This is a required
attribute.

	
list_display = ()

	Lists the fields to be displayed in the list view columns. This attribute
is modelled after ModelAdmin.list_display and supports model methods as
as ViewSet methods much like ModelAdmin. This is a required attribute.

So you have four possible values that can be used in list_display:

	A field of the model

	A callable that accepts one parameter for the model instance.

	A string representing an attribute on ViewSet class.

	A string representing an attribute on the model

See ModelAdmin.list_display documentation [https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display]
for examples.

A note about list_display fields with respect to how it differs from
ModelAdmin’s list_display.

In ModelAdmin, if a field specified in list_display is not
a database field, it can be set as a sortable field by setting
the method’s admin_order_field attribute to the relevant database
field that can be used as the sort field. In PopupCrudViewSet, this
attribute is named order_Field.

	
fields = ()

	A list of names of fields. This is interpreted the same as the Meta.fields
attribute of ModelForm. This is a required attribute.

	
form_class = None

	The form class to instantiate for Create and Update views. This is optional
and if not specified a ModelForm using the values of fields attribute will
be instantiated. An optional attribute, if specified, overrides fields
attribute value.

	
list_url = None

	The url where the list view is rooted. This will be used as the success_url
attribute value for the individual CRUD views. This is a required attribute.

	
paginate_by = 10

	Number of entries per page in list view. Defaults to 10. Setting this
to None will disable pagination. This is an optional attribute.

	
list_permission_required = ()

	List of permission names for the list view. Permission names are of the
same format as what is specified in permission_required() decorator.
Defaults to no permissions, meaning no permission is required.

	
create_permission_required = ()

	List of permission names for the create view.
Defaults to no permissions, meaning no permission is required.

	
detail_permission_required = ()

	List of permission names for the detail view.
Defaults to no permissions, meaning no permission is required.

	
update_permission_required = ()

	List of permission names for the update view.
Defaults to no permissions, meaning no permission is required.

	
delete_permission_required = ()

	List of permission names for the delete view.
Defaults to no permissions, meaning no permission is required.

	
list_template = None

	The template file to use for list view. If not specified, defaults
to the internal template.

	
related_object_popups = {}

	A table that maps foreign keys to its target model’s
PopupCrudViewSet.create() view url. This would result in the select box
for the foreign key to display a ‘New {model}’ link at its bottom, which
the user can click to add a new {model} object from another popup. The
newly created {model} object will be added to the select’s options and
set as its selected option.

Defaults to empty dict, meaning creation of target model objects, for the
foreign keys of a model, from a popup is disabled.

	
page_title = ''

	Page title for the list view page.

	
legacy_crud = False

	Enables legacy CRUD views where each of the Create, Detail, Update &
Delete views are performed from their own dedicated web views like Django
admin (hence the term legacy_crud :-)).

This property can accept either a boolean value, which in turn enables/
disables the legacy mode for all the CRUD views or it can accept
a dict of CRUD operation codes and its corresponding legacy mode
specified as boolean value.

This dict looks like:

legacy_crud = {
 'create': False,
 'detail': False,
 'update': False,
 'delete': False
}

So by setting legacy_crud[detail] = True, you can enable legacy style
crud for the detail view whereas the rest of the CRUD operations are
performed from a modal popup.

In other words, legacy_crud boolean value results in a dict that
consists of True or False values for all its keys, as the case
may be.

This defaults to False, which translates into a dict consisting of
False values for all its keys.

	
login_url = None

	Same as django.contrib.auth.mixins.AccessMixin login_url, but
applicable for all CRUD views.

	
raise_exception = False

	Same as django.contrib.auth.mixins.AccessMixin raise_exception,
but applicable for all CRUD views.

	
empty_list_icon = None

	Icon to be displayed above the empty list state message. Defaults to
None, which displays no icon. To specify an icon, set this property
to the CSS class of the required icon.

For example to use the glyphicon-book icon, set this property to:

empty_list_icon = 'glyphicon glyphicon-book'

Icons displayed are enlarged to 5 times the standard font size.

	
empty_list_message = u'No records found.'

	Message to be displayed when list view contains no records, that is,
empty list state. Defaults to ‘No records found`.

Empty list state rendering can be customized further by overriding
popupcrud/empty_list.html template in your own project.

	
breadcrumbs = []

	List of breadcrumbs that will be added to ViewSet views’ context,
allowing you build a breadcrumb hierarchy that reflects the ViewSet’s
location in the site.

Note that for legacy_crud views, system would add the list view
url to the breadcrumbs list.

	
breadcrumbs_context_variable = 'breadcrumbs'

	The template context variable name that will be initialized with the
value of breadcrumbs property. You can enumerate this variable in
your base template to build a breadcrumbs list that reflects the
hierarchy of the page.

	
item_actions = []

	Item actions are user specified actions to be performed on a row item in
list view. Each item action is specified as a 3-tuple with the following
attributes:

	its title

	its icon css such as glyphicon glyphicon-ok

	its action handler, which is the name of the CrudViewSet method to
be called when user selects the action. This method has the
following signature:

def action_handler(self, request, item):
 # action processing

 return (True, "Action completed")

The return value from the action handler is a 2-tuple that
consists of a boolean success indicator and a message. The message
is displayed to the user when the action is completed.

Also see get_item_actions() documentation below.

	
classmethod list(**initkwargs)

	Returns the list view that can be specified as the second argument
to url() in urls.py.

	
classmethod create(**initkwargs)

	Returns the create view that can be specified as the second argument
to url() in urls.py.

	
classmethod detail(**initkwargs)

	Returns the create view that can be specified as the second argument
to url() in urls.py.

	
classmethod update(**initkwargs)

	Returns the update view that can be specified as the second argument
to url() in urls.py.

	
classmethod delete(**initkwargs)

	Returns the delete view that can be specified as the second argument
to url() in urls.py.

	
get_new_url()

	Returns the URL to create a new model object. Returning None would
disable the new object creation feature and will hide the New {model}
button.

You may override this to dynamically determine if new object creation
ought to be allowed. Default implementation returns the value of
ViewSet.new_url.

	
get_detail_url(obj)

	Override this returning the URL where PopupCrudViewSet.detail()
is placed in the URL namespace such that ViewSet can generate the
appropriate href to display item detail in list view.

When this hyperlink is clicked, a popup containing the
object’s detail will be shown. By default this popup only shows the
object’s string representation. To show additional information in this
popup, implement <object>_detail.html in your project, typically in
the app’s template folder. If this file exists, it will be used to
render the object detail popup. True to Django’s DetailView
convention, you may use the {{ object }} template variable in the
template file to access the object and its properties.

Default implementations returns None, which results in object detail
popup being disabled.

	
get_edit_url(obj)

	Override this returning the URL where PopupCrudViewSet.update() is
placed in the URL namespace such that ViewSet can generate the
appropriate href to the item edit hyperlink in list view.

If None is returned, link to edit the specified item won’t be
shown in the object row.

	
get_delete_url(obj)

	Override this returning the URL where PopupCrudViewSet.delete() is
placed in the URL namespace such that ViewSet can generate the
appropriate href to the item delete hyperlink in list view.

If None is returned, link to delete the specified item won’t be
shown in the object row.

	
get_obj_name(obj)

	Return the name of the object that will be displayed in item
action prompts for confirmation. Defaults to str(obj), ie., the
string representation of the object. Override this to provide the user
with additional object details. The returned string may contain
embedded HTML tags.

For example, you might want to display the balance due from a customer
when confirming user action to delete the customer record.

	
get_permission_required(op)

	Return the permission required for the CRUD operation specified in op.
Default implementation returns the value of one
{list|create|detail|update|delete}_permission_required class attributes.
Overriding this allows you to return dynamically computed permissions.

	Parameters

	op – The CRUD operation code. One of
{'list'|'create'|'detail'|'update'|'delete'}.

	Return type

	The permission_required tuple for the specified operation.
Determined by looking up the given op from the table:

permission_table = {
 'list': self.list_permission_required,
 'create': self.create_permission_required,
 'detail': self.detail_permission_required,
 'update': self.update_permission_required,
 'delete': self.delete_permission_required
}

	
classmethod urls(namespace=None, views=('create', 'update', 'delete', 'detail'))

	Returns the CRUD urls for the viewset that can be added to the URLconf.
The URLs returned can be controlled by the views parameter which
is tuple of strings specifying the CRUD operations URLs to be returned.
This defaults to all the CRUD operations: create, read(detail),
update & delete (List view URL is added by default).

This method can be seen as a wrapper to calling the individual view
generator methods, list(), detail(), create(), update()
& delete(), to register them with the URLconf.

	Parameters

	
	namespace – The namespace under which the CRUD urls are registered.
Defaults to the value of <model>.Meta.verbose_name_plural (in
lowercase and in English).

	views – A tuple of strings representing the CRUD views whose URL
patterns are to be registered. Defaults to ('create', 'update',
'delete', 'detail'), that is all the CRUD operations for the model.

	Return type

	A collection of URLs, packaged using django.conf.urls.include(),
that can be used as argument 2 to url() (see example below).

	Example

	The following pattern registers all the CRUD urls
for model Book (in app library), generated by BooksCrudViewSet:

urlpatterns += [
 url(r'^books/', BooksCrudViewSet.urls())
]

This allows us to refer to individual CRUD operation url as:

reverse("library:books:list")
reverse("library:books:create")
reverse("library:books:detail", kwargs={'pk': book.pk})
reverse("library:books:update", kwargs={'pk': book.pk})
reverse("library:books:delete", kwargs={'pk': book.pk})

	
popups

	Provides a normalized dict of crud view types to use for the viewset
depending on client.legacy_crud setting.

Computes this dict only one per object as an optimization.

	
get_empty_list_icon()

	Determine the icon used to display empty list state.

Returns the value of empty_list_icon property by default.

	
get_empty_list_message()

	Determine the message used to display empty table state.

Returns the value of empty_list_message property by default.

	
get_breadcrumbs()

	Returns the value of ViewSet.breadcrumbs property. You can use this
method to return breadcrumbs that contain runtime computed values.

	
get_queryset(qs)

	Called by ListView allowing ViewSet to do further filtering of the
queryset, if necessary. By default returns the queryset argument
unchanged.

	Parameters

	qs – Queryset that is used for rendering ListView content.

	Return type

	A valid Django queryset.

	
get_form_kwargs()

	For Create and Update views, this method allows passing custom arguments
to the form class constructor. The return value from this method is
combined with the default form constructor **kwargs before it is
passed to the form class’ __init__() routine’s **kwargs.

Since Django CBVs use kwargs initial & instance, be careful
when using these, unless of course, you want to override the objects
provided by these keys.

	
get_item_actions(obj)

	Determine the custom actions for the given model object that
is displayed after the standard Edit & Delete actions in list view.

	Parameters

	obj – The row object for which actions are being queried.

	Return type

	A list of action 3-tuple (as explained in item_actions)
objects relevant for the given object. If no actions are to be
presented for the object, an empty list([]) can be
returned.

Default implementation returns the value of item_actions class
variable.

Since this method is called once for each row item, you can customize the
actions that is presented for each object. You can also altogether turn
off all actions for an object by returning an empty list([]).

RelatedFieldPopupFormWidget

	
class popupcrud.widgets.RelatedFieldPopupFormWidget(widget, new_url, *args, **kwargs)

	A modified version of django.admin’s RelatedFieldWidgetWrapper,
adds a Create New hyperlink to the bottom of the select box of a related
object field. This hyperlink will have CSS class add-another and its id
set to add_id_<field_name> with its href set to javascript:void(0);.

The associated JavaScript popupcrud/js/popupcrud.js, binds a click handler
to .add-another, which then activates the Bootstrap modal associated with
the hyperlink. The modal body will be filled with the HTML response from
an AJAX request to the hyperlink’s data-url attribute value.

The JavaScript file is added to the form’s media list automatically.

	
__init__(widget, new_url, *args, **kwargs)

	Constructor takes the following required parameters:

	Parameters

	
	widget – The underlying Select widget that this widget replaces.

	url – The url to load the HTML content to fill the assocaited modal
body.

Template Tags

bsmodal

A tag to help creation of Bootstrap modal dialogs. You may use this tag as:

{% bsmodal dialogTitle dialogId [close_title_button={Yes|No}] %}
 <dialog content goes here>
{% endbsmodal %}

	dialogTitle

	Required. The title of the modal window. This can be a template
variable (created with {% trans 'something' as var %}) or a
string literal.

	dialogId

	Required. The id of the modal window specified as string literal.

	close_title_button

	Optional. A flag indicating whether to show the modal
window close button on the titlebar. Specify one of Yes or No.

This would create a hidden dialog with title dialogTitle and id dialogId.
The content of the dialog body is to be written between the pair of tags
{% bsmodal %} and {% endbsmodal %}.

The final rendered html fragment would look like this:

<div class="modal fade" tabindex="-1" role="dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal" aria-label="Close">×</button>
 <h4 class="modal-title">{{dialogTitle}}</h4>
 </div>
 <div class="modal-body">
 <..content between bsmodal & endbsmodal tags..>
 </div>
 </div>
</div>

The html template for the modal is stored in popupcrud/modal.html. So if you
want to custom styling of the modal windows, you may define your own template
in your projects templates folder.

Refer to Boostrap documentation [https://getbootstrap.com/docs/3.3/javascript/#modals] on modals for more information on how to show
and hide the modal windows.

How-tos

Create CRUD views for a model

Given a model in app named library (source code taken from the demo project
) in project’s repo:

library/models.py
class Author(models.Model):
 name = models.CharField("Name", max_length=128)
 penname = models.CharField("Pen Name", max_length=128)
 age = models.SmallIntegerField("Age", null=True, blank=True)

 class Meta:
 ordering = ('name',)
 verbose_name = "Author"
 verbose_name_plural = "Authors"

 def __str__(self):
 return self.name

Declare a PopupCrudViewSet derived class in app’s views.py:

library/views.py
from popupcrud.views import PopupCrudViewSet

class AuthorViewSet(PopupCrudViewSet):
 model = Author
 fields = ('name', 'penname', 'age')
 list_display = ('name', 'penname', 'age')
 list_url = reverse_lazy("library:authors")
 new_url = reverse_lazy("library:new-author")

 def get_edit_url(self, obj):
 return reverse_lazy("library:edit-author", kwargs={'pk': obj.pk})

 def get_delete_url(self, obj):
 return reverse_lazy("library:delete-author", kwargs={'pk': obj.pk})

Wire up the individual CRUD views generated by the viewset to the app URL
namespace in urls.py:

library/urls.py
urlpatterns= [
 url(r'^authors/$', views.AuthorCrudViewset.list(), name='authors'),
 url(r'^authors/new/$', views.AuthorCrudViewset.create(), name='new-author'),
 url(r'^authors(?P<pk>\d+)/edit/$', views.AuthorCrudViewset.update(), name='edit-author'),
 url(r'^authors(?P<pk>\d+)/delete/$', views.AuthorCrudViewset.delete(), name='delete-author'),
]

In the projects root urls.py:

demo/urls.py
urlpatterns + [
 url(r'^library/', include('library.urls', namespace='library')),
]

Control access using permissions

In your CRUD ViewSet, declare the permissions required for each CRUD view as:

class AuthorViewSet(PopupCrudViewSet):
 model = Author
 ...
 list_permission_required = ('library.list_authors',)
 create_permission_required = ('library.add_author',)
 update_permission_required = ('library.change_author',)
 delete_permission_required = ('library.delete_author',)

However, if you want to determine the permission dynamically, override the
get_permission_required() method and implement your custom permission logic:

class AuthorViewSet(PopupCrudViewSet):
 model = Author
 ...

 def get_permission_required(self, op):
 if op == 'create':
 # custom permission for creating new objects

 elif op == 'delete':
 # custom permission for updating existing objects
 else:
 return super(AuthorViewSet, self).get_permission_required(op)

Create a model object from its FK select box in another form

This allows user to create new instances of a model while they are working
on a form which has a FK reference to the model for which PopupCrudViewSet
views exist. This allows objects to be added seamlessly without the user
switching context to another page to add the object and then coming back to
work on the form.

To illustrate with an example:

from popupcrud.widgets import RelatedFieldPopupFormWidget

class AuthorRatingForm(forms.Form):
 author = forms.ModelChoiceField(queryset=Author.objects.all())
 rating = forms.ChoiceField(label="Rating", choices=(
 ('1', '1 Star'),
 ('2', '2 Stars'),
 ('3', '3 Stars'),
 ('4', '4 Stars')
))

 def __init__(self, *args, **kwargs):
 super(AuthorRatingForm, self).__init__(*args, **kwargs)
 author = self.fields['author']
 # Replace the default Select widget with PopupCrudViewSet's
 # RelatedFieldPopupFormWidget. Note the url argument to the widget.
 author.widget = RelatedFieldPopupFormWidget(
 widget=forms.Select(choices=author.choices),
 new_url=reverse_lazy("library:new-author"))

class AuthorRatingView(generic.FormView):
 form_class = AuthorRatingForm

 # rest of the View handling code as per Django norms

In the above form, the default widget for author, django.forms.widgets.Select
has been replaced by RelatedFieldPopupFormWidget. Note the arguments to the
widget constructor – it takes the underlying Select widget and a url to create
a new instance of the model.

Use Select2 instead of native Select widget

Select2 is an advanced version the browser native Select box allowing users
navigate through fairly large selection list using keystrokes. Select2 is
excellently supported in Django through the thirdparty app django-select2 [https://github.com/applegrew/django-select2/].
Replacing the native django.forms.Select control with equivalent
django_select2.forms.Select2Widget widget is extremely easy:

from django_select2.forms import Select2Widget
from popupcrud.widgets import RelatedFieldPopupFormWidget

class AuthorRatingForm(forms.Form):
 author = forms.ModelChoiceField(queryset=Author.objects.all())
 rating = forms.ChoiceField(label="Rating", choices=(
 ('1', '1 Star'),
 ('2', '2 Stars'),
 ('3', '3 Stars'),
 ('4', '4 Stars')
))

 def __init__(self, *args, **kwargs):
 super(AuthorRatingForm, self).__init__(*args, **kwargs)
 author = self.fields['author']
 # Replace the default Select widget with PopupCrudViewSet's
 # RelatedFieldPopupFormWidget. Note the url argument to the widget.
 author.widget = RelatedFieldPopupFormWidget(
 widget=forms.Select2Widget(choices=author.choices),
 new_url=reverse_lazy("library:new-author"))

Note how Select2Widget is essentially a drop in replacement for the native
django.forms.Select widget. Consult django-select2 docs [http://django-select2.readthedocs.io/en/latest/get_started.html]
for instructions on integrating it with your project.

Providing your own templates

Out of the box, popupcrud comes with its own templates for rendering all
the CRUD views. For most use cases this ought to suffice. For the detail
view, the default template just renders the object name in the popup. Typically,
you might want to include additional information about an object in its detail
view. To do this, implement <model>_detail.html in your app’s template folder
and this template will be used to display details about an object.

One point to highlight about templates is that since popupcrud can work in
both legacy(like Django admin) and the more modern Web 2.0
modal dialog based modes, it needs two templates to render the content for the
two modes. This is necessary as contents of a modal popup window should only
contain details of the object without site-wide common elements such as headers
and menu that is usually provided through a base template whereas the dedicated
legacy crud page requires all the site-wide common artifacts. This problem
exists for all CRUD views - create, update, delete and detail. Therefore, for
consistency across different CRUD views, popupcurd uses a standard file naming
convention to determine the template name to use for the given CRUD view mode.

This convention gives first priority to Django generic CRUD views’ default
template file name. If it’s present it will be used for the CRUD view. However,
if the view is to be rendered in a modal popup window, which should not have
site-wide common artifacts, popupcrud appends _inner to the base template
filename (the part before .html). So if you want to display
details of a object of class Book in a modal popup, you have to implement
the template file book_detail_inner.html. However, if you disable popups
for the detail view, you have to implement book_detail.html. The
difference between the two being that *_inner.html only renders the object’s
details whereas book_detail.html renders the object’s details along with
site-wide page common artifacts such as header, footers and/or sidebars.

One strategy is to provide both templates and organize them using the
{% include %} tag. With this pattern, book_detail.html would
look like this:

{% extends "base.html" %}
{% block content %}
{% include "book_detail_inner.html" %}
{% endblock content %}

The same pattern is applicable to other CRUD views as well where template files
such as book_form.html, confirm_book_delete.html are looked for first
before using popupcrud’s own internal templates.

Demo Project

The demo project in folder demo shows four usage scenarios of
PopupCrudViewSet. To run the demo, issue the following commands from
demo folder:

./manage migrate
./manage runserver

Homepage has links to the various views in the project that demonstrates
different use cases. Each link has a brief description on the type of use case
it demonstrates.

One of the forms in the demo MultipleRelatedObjectForm, shows how the
advanced Select2 can be used instead of the django’s native ‘Select`
widget. For this to work, you need to install django-select2 in the virtual
environment where demo is run.

Settings

	
popupcrud.views.POPUPCRUD_DEFAULTS

	django-popupcrud global settings are specified as the dict variable
POPUPCRUD in settings.py.

POPUPCRUD currently supports the following settings with their
default values:

	base_template: The prjoject base template from which all popupcrud
templates should be derived.

Defaults to base.html.

	page_title_context_variable: Name of the context variable whose value
will be set as the title for the CRUD list view page. This title is
specified as the value for the class attribute ViewSet.page_title or
as the return value of ViewSet.get_page_title().

Defaults to page_title.

	paginate_by: Default number of rows per page for queryset pagination.
This is the same as ListView.paginate_by.

Defaults to 10.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 popupcrud	

 	
 	
 popupcrud.templatetags.bsmodal	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | U

_

 	
 	__init__() (popupcrud.widgets.RelatedFieldPopupFormWidget method)

B

 	
 	breadcrumbs (popupcrud.views.PopupCrudViewSet attribute)

 	
 	breadcrumbs_context_variable (popupcrud.views.PopupCrudViewSet attribute)

C

 	
 	create() (popupcrud.views.PopupCrudViewSet class method)

 	
 	create_permission_required (popupcrud.views.PopupCrudViewSet attribute)

D

 	
 	delete() (popupcrud.views.PopupCrudViewSet class method)

 	delete_permission_required (popupcrud.views.PopupCrudViewSet attribute)

 	
 	detail() (popupcrud.views.PopupCrudViewSet class method)

 	detail_permission_required (popupcrud.views.PopupCrudViewSet attribute)

E

 	
 	empty_list_icon (popupcrud.views.PopupCrudViewSet attribute)

 	
 	empty_list_message (popupcrud.views.PopupCrudViewSet attribute)

F

 	
 	fields (popupcrud.views.PopupCrudViewSet attribute)

 	
 	form_class (popupcrud.views.PopupCrudViewSet attribute)

G

 	
 	get_breadcrumbs() (popupcrud.views.PopupCrudViewSet method)

 	get_delete_url() (popupcrud.views.PopupCrudViewSet method)

 	get_detail_url() (popupcrud.views.PopupCrudViewSet method)

 	get_edit_url() (popupcrud.views.PopupCrudViewSet method)

 	get_empty_list_icon() (popupcrud.views.PopupCrudViewSet method)

 	get_empty_list_message() (popupcrud.views.PopupCrudViewSet method)

 	
 	get_form_kwargs() (popupcrud.views.PopupCrudViewSet method)

 	get_item_actions() (popupcrud.views.PopupCrudViewSet method)

 	get_new_url() (popupcrud.views.PopupCrudViewSet method)

 	get_obj_name() (popupcrud.views.PopupCrudViewSet method)

 	get_permission_required() (popupcrud.views.PopupCrudViewSet method)

 	get_queryset() (popupcrud.views.PopupCrudViewSet method)

I

 	
 	item_actions (popupcrud.views.PopupCrudViewSet attribute)

L

 	
 	legacy_crud (popupcrud.views.PopupCrudViewSet attribute)

 	list() (popupcrud.views.PopupCrudViewSet class method)

 	list_display (popupcrud.views.PopupCrudViewSet attribute)

 	
 	list_permission_required (popupcrud.views.PopupCrudViewSet attribute)

 	list_template (popupcrud.views.PopupCrudViewSet attribute)

 	list_url (popupcrud.views.PopupCrudViewSet attribute)

 	login_url (popupcrud.views.PopupCrudViewSet attribute)

M

 	
 	model (popupcrud.views.PopupCrudViewSet attribute)

N

 	
 	new_url (popupcrud.views.PopupCrudViewSet attribute)

P

 	
 	page_title (popupcrud.views.PopupCrudViewSet attribute)

 	paginate_by (popupcrud.views.PopupCrudViewSet attribute)

 	popupcrud.templatetags.bsmodal (module)

 	
 	POPUPCRUD_DEFAULTS (in module popupcrud.views)

 	PopupCrudViewSet (class in popupcrud.views)

 	popups (popupcrud.views.PopupCrudViewSet attribute)

R

 	
 	raise_exception (popupcrud.views.PopupCrudViewSet attribute)

 	
 	related_object_popups (popupcrud.views.PopupCrudViewSet attribute)

 	RelatedFieldPopupFormWidget (class in popupcrud.widgets)

U

 	
 	update() (popupcrud.views.PopupCrudViewSet class method)

 	
 	update_permission_required (popupcrud.views.PopupCrudViewSet attribute)

 	urls() (popupcrud.views.PopupCrudViewSet class method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-popupcrud’s documentation!

 		
 Quickstart

 		
 Reference

 		
 Classes

 		
 PopupCrudViewSet

 		
 RelatedFieldPopupFormWidget

 		
 Template Tags

 		
 bsmodal

 		
 How-tos

 		
 Create CRUD views for a model

 		
 Control access using permissions

 		
 Create a model object from its FK select box in another form

 		
 Use Select2 instead of native Select widget

 		
 Providing your own templates

 		
 Demo Project

 		
 Settings

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

